1,175 research outputs found

    Report on an all-sky LIGO search for periodic gravitational waves in the S4 data

    Full text link
    We report on an all-sky search with the LIGO detectors for periodic gravitational waves in the frequency range 50-1000 Hz and having a negative frequency time derivative with magnitude between zero and 10810^{-8} Hz/s. Data from the fourth LIGO science run have been used in this search. Three different semi-coherent methods of summing strain power were applied. Observing no evidence for periodic gravitational radiation, we report upper limits on strain amplitude and interpret these limits to constrain radiation from rotating neutron stars.Comment: 5 pages, 1 figure, presented at Amaldi7, Sydney (July 2007

    A model for reactive porous transport during re-wetting of hardened concrete

    Full text link
    A mathematical model is developed that captures the transport of liquid water in hardened concrete, as well as the chemical reactions that occur between the imbibed water and the residual calcium silicate compounds residing in the porous concrete matrix. The main hypothesis in this model is that the reaction product -- calcium silicate hydrate gel -- clogs the pores within the concrete thereby hindering water transport. Numerical simulations are employed to determine the sensitivity of the model solution to changes in various physical parameters, and compare to experimental results available in the literature.Comment: 30 page

    Imbibition in Disordered Media

    Full text link
    The physics of liquids in porous media gives rise to many interesting phenomena, including imbibition where a viscous fluid displaces a less viscous one. Here we discuss the theoretical and experimental progress made in recent years in this field. The emphasis is on an interfacial description, akin to the focus of a statistical physics approach. Coarse-grained equations of motion have been recently presented in the literature. These contain terms that take into account the pertinent features of imbibition: non-locality and the quenched noise that arises from the random environment, fluctuations of the fluid flow and capillary forces. The theoretical progress has highlighted the presence of intrinsic length-scales that invalidate scale invariance often assumed to be present in kinetic roughening processes such as that of a two-phase boundary in liquid penetration. Another important fact is that the macroscopic fluid flow, the kinetic roughening properties, and the effective noise in the problem are all coupled. Many possible deviations from simple scaling behaviour exist, and we outline the experimental evidence. Finally, prospects for further work, both theoretical and experimental, are discussed.Comment: Review article, to appear in Advances in Physics, 53 pages LaTe

    Collision activity during training increases total energy expenditure measured via doubly labelled water

    Get PDF
    Purpose: Collision sports are characterised by frequent high intensity collisions that induce substantial muscle damage, potentially increasing the energetic cost of recovery. Therefore, this study investigated the energetic cost of collision-based activity for the first time across any sport. Methods: Using a randomised crossover design, six professional young male rugby league players completed two different five-day pre-season training microcycles. Players completed either a collision (COLL; 20 competitive one-on-one collisions) or non-collision (nCOLL; matched for kinematic demands, excluding collisions) training session on the first day of each microcycle, exactly seven days apart. All remaining training sessions were matched and did not involve any collision-based activity. Total energy expenditure was measured using doubly labelled water, the literature gold standard. Results: Collisions resulted in a very likely higher (4.96 ± 0.97 MJ; ES = 0.30 ±0.07; p=0.0021) total energy expenditure across the five-day COLL training microcycle (95.07 ± 16.66 MJ) compared with the nCOLL training microcycle (90.34 ± 16.97 MJ). The COLL training session also resulted in a very likely higher (200 ± 102 AU; ES = 1.43 ±0.74; p=0.007) session rating of perceived exertion and a very likely greater (-14.6 ± 3.3%; ES = -1.60 ±0.51; p=0.002) decrease in wellbeing 24h later. Conclusions: A single collision training session considerably increased total energy expenditure. This may explain the large energy expenditures of collision sport athletes, which appear to exceed kinematic training and match demands. These findings suggest fuelling professional collision-sport athletes appropriately for the "muscle damage caused” alongside the kinematic “work required”. Key words: Nutrition, Recovery, Contact, Rugb

    Detection Confidence Tests for Burst and Inspiral Candidate Events

    Full text link
    The LIGO Scientific Collaboration (LSC) is developing and running analysis pipelines to search for gravitational-wave transients emitted by astrophysical events such as compact binary mergers or core-collapse supernovae. However, because of the non-Gaussian, non-stationary nature of the noise exhibited by the LIGO detectors, residual false alarms might be found at the end of the pipelines. A critical aspect of the search is then to assess our confidence for gravitational waves and to distinguish them from those false alarms. Both the 'Compact Binary Coalescence' and the 'Burst' working groups have been developing a detection checklist for the validation of candidate-events, consisting of a series of tests which aim to corroborate a detection or to eliminate a false alarm. These tests include for example data quality checks, analysis of the candidate appearance, parameter consistency studies and coherent analysis. In this paper, the general methodology used for candidate validation is presented. The method is illustrated with an example of simulated gravitational-wave signal and a false alarm.Comment: 15 pages, 8 figures, Contribution to 12th Gravitational Wave Data Analysis Workshop. Version sent to Classical and Quantum Gravity immediately before publication. It addresses the CQG referee's comment

    Experimental system to displace radioisotopes from upper to deeper soil layers: chemical research

    Get PDF
    BACKGROUND: Radioisotopes are introduced into the environment following nuclear power plant accidents or nuclear weapons tests. The immobility of these radioactive elements in uppermost soil layers represents a problem for human health, since they can easily be incorporated in the food chain. Preventing their assimilation by plants may be a first step towards the total recovery of contaminated areas. METHODS: The possibility of displacing radionuclides from the most superficial soil layers and their subsequent stabilisation at lower levels were investigated in laboratory trials. An experimental system reproducing the environmental conditions of contaminated areas was designed in plastic columns. A radiopolluted soil sample was treated with solutions containing ions normally used in fertilisation (NO(3)(-), NH(4)(+), PO(4)(--- )and K(+)). RESULTS: Contaminated soils treated with an acid solution of ions NO(3)(-), PO(4)(--- )and K(+), undergo a reduction of radioactivity up to 35%, after a series of washes which simulate one year's rainfall. The capacity of the deepest soil layers to immobilize the radionuclides percolated from the superficial layers was also confirmed. CONCLUSION: The migration of radionuclides towards deeper soil layers, following chemical treatments, and their subsequent stabilization reduces bioavailability in the uppermost soil horizon, preventing at the same time their transfer into the water-bearing stratum

    The design and implementation of a study to investigate the effectiveness of community vs hospital eye service follow-up for patients with neovascular age-related macular degeneration with quiescent disease

    Get PDF
    IntroductionStandard treatment for neovascular age-related macular degeneration (nAMD) is intravitreal injections of anti-VEGF drugs. Following multiple injections, nAMD lesions often become quiescent but there is a high risk of reactivation, and regular review by hospital ophthalmologists is the norm. The present trial examines the feasibility of community optometrists making lesion reactivation decisions.MethodsThe Effectiveness of Community vs Hospital Eye Service (ECHoES) trial is a virtual trial; lesion reactivation decisions were made about vignettes that comprised clinical data, colour fundus photographs, and optical coherence tomograms displayed on a web-based platform. Participants were either hospital ophthalmologists or community optometrists. All participants were provided with webinar training on the disease, its management, and assessment of the retinal imaging outputs. In a balanced design, 96 participants each assessed 42 vignettes; a total of 288 vignettes were assessed seven times by each professional group.The primary outcome is a participant's judgement of lesion reactivation compared with a reference standard. Secondary outcomes are the frequency of sight threatening errors; judgements about specific lesion components; participant-rated confidence in their decisions about the primary outcome; cost effectiveness of follow-up by optometrists rather than ophthalmologists.DiscussionThis trial addresses an important question for the NHS, namely whether, with appropriate training, community optometrists can make retreatment decisions for patients with nAMD to the same standard as hospital ophthalmologists. The trial employed a novel approach as participation was entirely through a web-based application; the trial required very few resources compared with those that would have been needed for a conventional randomised controlled clinical trial

    New Bending Algorithm for Field-Driven Molecular Dynamics

    Get PDF
    A field-driven bending method is introduced in this paper according to the coordinate transformation between straight and curved coordinates. This novel method can incorporate with the periodic boundary conditions in analysis along axial, bending, and transverse directions. For the case of small bending, the bending strain can be compatible with the beam theory. Consequently, it can be regarded as a generalized SLLOD algorithm. In this work, the bulk copper beam under bending is analyzed first by the novel bending method. The bending stress estimated here is well consistent to the results predicted by the beam theory. Moreover, a hollow nanowire is also analyzed. The zigzag traces of atomic stress and the corresponding 422 common neighbor type can be observed near the inner surface of the hollow nanowire, which values are increased with an increase of time. It can be seen that the novel bending method with periodic boundary condition along axial direction can provide a more physical significance than the traditional method with fixed boundary condition

    Asteroseismology and Interferometry

    Get PDF
    Asteroseismology provides us with a unique opportunity to improve our understanding of stellar structure and evolution. Recent developments, including the first systematic studies of solar-like pulsators, have boosted the impact of this field of research within Astrophysics and have led to a significant increase in the size of the research community. In the present paper we start by reviewing the basic observational and theoretical properties of classical and solar-like pulsators and present results from some of the most recent and outstanding studies of these stars. We centre our review on those classes of pulsators for which interferometric studies are expected to provide a significant input. We discuss current limitations to asteroseismic studies, including difficulties in mode identification and in the accurate determination of global parameters of pulsating stars, and, after a brief review of those aspects of interferometry that are most relevant in this context, anticipate how interferometric observations may contribute to overcome these limitations. Moreover, we present results of recent pilot studies of pulsating stars involving both asteroseismic and interferometric constraints and look into the future, summarizing ongoing efforts concerning the development of future instruments and satellite missions which are expected to have an impact in this field of research.Comment: Version as published in The Astronomy and Astrophysics Review, Volume 14, Issue 3-4, pp. 217-36
    corecore